Логотип сайта Инструменты и оборудование
Инструменты и оборудование

  • Виды инструментов
    • Бензопилы
    • Бетономешалки
    • Деревообрабатывающий инструмент
    • Дрели и перфораторы
    • Измерительный инструмент
    • Компрессоры
    • Металлорежущий инструмент
    • Пневматический инструмент
    • Ручной инструмент
    • Сварочные аппараты
    • Шлифовальные машины
    • Шуруповерты
  1. Главная
  2. »
  3. Сварочное оборудование

Импульсный сварочный аппарат

21.04.2020 Сварочное оборудование

  1. Импульсная сварка. Сфера использования и преимущества
    1. Основные преимущества
  2. Импульсный сварочный полуавтомат S StandartPulse, LORCH (Германия)
    1. Краткое описание серии S
    2. Дистанционная регулировка с горелки
  3. Импульсный сварочный аппарат
  4. Импульсный сварочный аппарат
  5. Импульсный сварочный аппарат

Импульсная сварка. Сфера использования и преимущества

Строительство дома или ремонт квартиры часто не может обойтись без использования сварки. Она помогает быстро решить проблему с текущей трубой или используется во время создания системы водоснабжения, отопления, канализации. Известно, что разные области работ, различные виды металлов требуют использования и разных видов сварки.

Сегодня широкое распространение получила сварка на основе импульсов. С ее помощью можно привести к реализации достаточно сложные задачи, но при этом принцип действия такой сварки очень прост и с ней сможет справиться даже новичок в данной профессии.
В качестве расходных материалов здесь используются обычные электроды, при этом очень важно то, что для крепления металлических конструкций подойдут плавящиеся и неплавящиеся электроды.

Основные преимущества

Вообще, сварка как метод сцепления металлических конструкций — довольно прогрессивный и быстро развивающийся вид работ. Сегодня специалисты используют различные ее виды:

  • термическую,
  • термомеханическую,
  • механическую.

Но при этом импульсная сварка обладает целым спектром преимуществ, в число которых можно отнести следующие характеристики:

  1. Соединение получается очень качественным и надежным, что крайне важно в сфере строительства и ремонта, очень часто от качества сварки зависит качество всей конструкции.
  2. Полученный шов имеет красивый внешний вид, ровные края, он имеет отличные эстетические показатели, что важно для дальнейшей отделке изделия.
  3. В отличие от многих других видов сварки, при работе на весу здесь не остаются прожоги, вероятность брака значительным образом сокращается.

Строительство немыслимо без использования сварочного аппарата, но очень часто используемое оборудование обладает большими габаритами, что неудобно в случае необходимости выполнения работ в ограниченном пространстве или на весу. Именно поэтому особенное значение имеет не комплектация импульсной сварки, а также возможность выбора различного рода режимов для проведения максимально качественной работы.
Использовать импульсные сварочные аппараты можно в различных сферах:

  • при короткой или смешанной дуге, во время использования аргона,
  • при необходимости проведения работ с низко- или высоколегированными сталями, сплавами алюминия,
  • в сферах промышленности, на заводах, во время проведения ремонта транспортных средств, систем вентиляции, монтажных работах и так далее.

Импульсный сварочный полуавтомат S StandartPulse, LORCH (Германия)

Импульсный сварочный аппарат MIG/MAG с цифровым управлением – пропуск в профессиональный мир импульсной сварки

Серия S обеспечивает стандартную импульсную сварку MIG/MAG идеального промышленного качества. Преимущества не вызывают сомнений: практически без брызг, оптимальный контроль сварочной ванны, контролируемый перенос капель металла и превосходный внешний вид шва. Экономится время на доработку шва. Все объясняется сверхбыстрым автоматическим регулированием, которое за миллисекунды реагирует на изменения и таким образом оптимально управляет сварочным процессом. Серия S характеризуется отличной продолжительностью включения, концепцией управления «Три шага до начала сварки» и прочным промышленным корпусом с большим количеством практичных элементов. Так, например, удобные ручки обеспечивают не только легкое маневрирование и защищают панель управления и разъемы, но также служат в качестве точек приложения усилий и для намотки кабелей. Прочная тележка для газовых баллонов с низкой высотой погрузки облегчает замену баллонов. Также имеется вариант для двух баллонов по 50 л. Вы можете в любое время индивидуально изменить настройки вашей установки в соответствии с новыми задачами и дооснастить ее всеми процессами Speed: SpeedPulse, SpeedArc, SpeedUp, а также новым процессом SpeedRoot.

Кто видит будущее в своей работе, не должен допускать никаких компромиссов при выборе полуавтомата для импульсной MIG/MAG сварки.

Выбор очевиден: SAPROM S.

Превосходит все ожидания.

Краткое описание серии S

  • Инвертор MIG/MAG с импульсной сварочной дугой, плавная регулировка
  • В прочном промышленном корпусе
  • Вариант в виде компактного аппарата или с внешним блоком подачи проволоки
  • Возможны варианты сдвоенной подачи с одним или двумя внешними блоками подачи проволоки
  • Блоки поставляются в различных исполнениях: для мастерских, монтажа, судостроителей и роботов
  • Поставка с газовым или водяным охлаждением
  • Промышленный 4-роликовой механизм подачи проволоки
  • Текстовый дисплей с выбором языка
  • Цифровая индикация сварочного тока и напряжения
  • Возможность установки опций: SpeedPulse, SpeedArc, SpeedUp, SpeedRoot
  • Tiptronic для сохранения в памяти до 100 сварочных заданий
  • Возможность ДУ на сварочной горелке Powermaster
  • Концепция управления «Три шага до начала сварки»
  • Возможность дополнительного оснащения горелки Push-Pull и промежуточного привода (длина до 43 м)
  • Произведено и испытано по DIN EN 60974-1, наличие сертификата ГОСТ-Р и знаков CE и S, класс защиты IP 23

Как и почему актуален импульсный MIG/MAG процесс?

Сварка MIG/MAG в импульсном режиме, в зависимости от полуавтомата, дает низкий коэффициент разбрызгивания. Это значит, что экономится дорогостоящая сварочная проволока и отпадает необходимость зачистки брызг после сварки. Бесчисленные рабочие часы будут сэкономлены. Основной принцип: лучше аппарат – меньше брызг. Управляемый перенос металла в самых маленьких каплях обеспечивает исключительное формирование сварочного шва. Формирование капли, ее отделение и переход в сварочную ванну происходят в интервалах тысячных долей секунды. Только очень сбалансированный источник питания гарантирует стабильную дугу и наименьшее разбрызгивание. Кроме того “импульсный режим позволяет получить прекрасный внешний вид сварного шва, удобную сварку в различных пространственных положениях и меньшее усиление сварного шва в сравнении с обычным MIG/MAG процессом. Позволяет применять более дешевые проволоки большего диаметра (даже на более тонких материалах).

Нет прилипаний и непроваров .

Нет риска прилипания проволоки и непроваров в начале сварного шва. Увеличенный ввод энергии в начале сварки гарантирует абсолютное

Легкое зажигание без брызг – точное микропроцессорное управление, опирающееся на практический опыт.

Регулирование в миллисекундах. Машина распознаёт касание проволоки. В зависимости от процесса, микропроцессорный контроллер управляет параметрами сварки: скоростью подачи проволоки, током и напряжением сварки. Лучше аппарат – лучше зажигание дуги, также как уменьшение брызг и засорение сопел. Saprom S делает это намного лучше других.

Совершенная форма импульса – итог многолетних исследований и проведенных испытаний.

Каждый материал реагирует по разному на импульсы. Основным требованием для совершенной дуги является – идеальное управление импульсным режимом. Лучшая форма импульса – лучше результат сварки. Saprom S имеет программное обеспечение, которое гарантирует идеальную форму импульса для каждого материала.

Алюминий с TwinPulse ® (двойными импульсами)

Сделан как стандартный режим на полуавтомате – от изобретателя этого процесса. TwinPulse ® управляет капельным переносом и контролирует отрыв каждой капли электродного метала. Этот процесс обеспечивает качественную сварку в различных пространственных положениях. Незначительные тепловложения минимизирует деформации. Идеальный вид сварных швов – идентичный процессу TIG.

Контроль длины дуги. Качественный шов, несмотря на дрожащие руки.

Длина дуги – критический фактор для качественной сварки. Цифровой контроль длины дуги Saprom S всегда поддерживает стабильную длину дуги. Отклонения обнаруженные в доли секунды молниеносно корректируются высокоскоростным микропроцессором. Достижение безупречных результатов в условиях быстроизменяющегося вылета электрода – больше не проблема.

Отсутствие кратера в конце шва благодаря автоматическому импульсному завершению сварки.

К концу сварного шва Saprom S автоматический снижает сварочный ток. Поэтому кратеры в конце шва в прошлом. Автоматическое импульсное завершение сварки заботится о всегда чистом конце проволоки, все последующие зажигания дуги произойдут безупречно.

Глубокое проплавление и меньше шума.

Качество сварного соединения в первую очередь зависит от качественно проваренного корня шва. Новый Speed Pulse позволяет получать гораздо большее проплавление, как на стали, так и на алюминии. И при этом процесс будет более тихим. Приблизительно 10 децибелов. Таким образом, не напрягая слух, Вы получаете действительно глубокое, кинжальное проплавление.

Saprom S еще понятнее. Инструкция больше не требуется.

Первичная панель: Saprom S сам управляет энергией сварки, достаточно повернуть один регулятор. Цифровой дисплей отображает выбранный параметр: толщину материала, сварочный ток и напряжение. Ваши сварочные результаты всегда отображаются, даже когда Вы закончили сварку. Второй регулятор отвечает за длину сварочной дуги

Вторичная панель: Вы выбираете тип сварочной проволоки и защитного газа. Доступная база данных предлагает оптимальные режимы сварки для решения Ваших задач.

Если необходимо, Вы можете индивидуально изменять предустановленные параметры.

Система Tiptronic сохраняет Ваши рабочие настройки

Проверяйте работоспособность машины диагностической системой и выбирайте базовые параметры, язык меню и степень доступа к настройкам.

Бескомпромиссный Saprom S.

от 320 до 500 Ампер

Источник питания с отдельным блоком подачи проволоки, компактной или мобильной компоновки

Горелка PowerMaster . С цифровым дисплеем и дистанционным управлением силы тока, скорости подачи проволоки и выбором программ с Tiptronic . Больше нет необходимости постоянно возвращаться к панели управления в полуавтомате.

Система Tiptronic . 100 ячеек памяти. Выбор программ с горелки

Электронная база: знаний лучших специалистов по импульсной сварке в мире. Наилучшие параметры сварки для стали , алюминия и MIG-пайки. Интуитивное и эргономичное управление. Никаких вопросов, никаких загадок. Параметры отображаются на дисплее. И каждая кнопка имеет только одну функцию.

TwinPulse ® как стандартная функция. Мы изобрели этот процесс.

Корпус. Функциональный дизайн. Низко расположенная площадка газового баллона, держатель для сварочной горелки – все это предназначено для интенсивной эксплуатации в течение многих лет.

Цифровое межблочное управление. Управление в режиме реального времени, точно бит за битом. Предельная повторяемость результатов. Перегрев, старение, перепады напряжения – больше не имеют никакого влияния.

Инверторный источник питания. Высокоэффективный и мощный силовой модуль. Высокая скорость управления. Низкое энергопотребление и вес.

Передача и копирование данных.

Режимы, индивидуальные настройки и программы « Tiptronic » надежно хранятся в памяти Saprom-S . Используя разъем CAN, эти данные могут быть быстро переданы на ПК или любой другой Saprom-S . Мы не хотим использовать читающие устройства электронных карт и дисков в источнике питания. Грязь нарушает их работу.

Водоохладитель мощностью 1,1 кВт. В отличие от многих конкурентов мы, контролируем эффективность охлаждения, измеряя расход хладагента, а не его давление. Это гарантирует, что горелка всегда хорошо охлаждается. Это может казаться незначительным, но будет означать меньшее количество сгоревших горелок и связанные с этим затраты.

Режим Stand-by . Охлаждение начнется, только если оно действительно необходимо. Это снижает энергопотребление и снижает шум и попадание пыли в систему охлаждения.

Экономическая эффективность сварочной машины рассчитывается из 96 % всех последующих затрат после закупки. Но последующие затраты решающие, а цена закупки составляет приблизительно 4%. Качество сварки, время переналадки, производительность, потери сварочного материала, срок службы – вот экономические факторы влияющие на окупаемость. Не старайтесь экономить на инструменте.

Дружелюбный интерфейс. Робот-Интерфейс позволяет соединить Saprom S с любым роботом – аналоговым или цифровым. Серийный разъём CAN-Bus может быть дополнительно состыкован с другими Bus-системами (Profibus, Interbus, Ethernet . ). Адаптация интерфейса поддержана программным обеспечением “Robot Tool”, которое визуализирует передачу данных между роботом и источником питания.

Дистанционная регулировка с горелки

Здесь вы можете сэкономить на постоянном перемещении от аппарата к детали и обратно для оптимальной настройки сварочных параметров. Просто используйте инновационную технологию горелки Powermaster. С ее помощью регулируйте все важные параметры прямо на панели горелки. С нее же можно друг за другом вызывать и программы для сложных деталей.


Импульсный сварочный аппарат

В радиолюбительской среде ходит немало мифов. Основа их появления – недостаточное знакомство с предметом творчества, отсутствие или неполнота практического опыта, иногда – отсутствие необходимого образования, да и просто доверчивость. Один из таких прочных мифов – создание недорогого и надежного сварочного аппарата, основанного на принципах импульсной техники. Из общения с несколькими радиолюбителями, задумавшими такой аппарат сделать, я вынес несколько соображений, некоторый опыт, которым хочу откровенно поделиться с читателями. Большая просьба не воспринимать этот материал как камень в огород радиолюбителей, увлекшихся конструированием сварочных аппаратов. Уже одно то, что мысль работает в таком направлении – хорошо. Лично я никогда конкретно сварочными аппаратами не занимался, но опыт разработки мощных импульсных источников питания, преодоление определенных сложностей дают мне некоторое право говорить о том, каких ориентировочных затрат “навскидку” потребует создание “сварочника”.

Во-первых, пришедшая в голову задумка создать сварочный аппарат поначалу кажется очень простой. Как правило, у радиолюбителя уже имеется предварительный удачный опыт изготовления сетевого импульсного стабилизатора на сотню-другую ватт, собранного по какой-либо типовой схеме (более или менее удачной). Естественно, успех придает сил и требует резко наращивать мощность. Однако первый запуск “сварочника” неизменно приносит запах сгоревших транзисторов, выбитый автомат в квартирном щитке, снопы искр из розетки. Могут происходить и более серьезные неприятности типа отключения света во всем подъезде или воспламенение квартирной проводки, рассчитанной на токи не более 10…15 А. Кого-то данная неприятность может остановить в экспериментировании, а кому-то – взяться за переработку схемы, покупку новых комплектующих и – вновь испытывать, испытывать, испытывать. Испытания могут продолжаться годами, поглощая все свое свободное время и деньги.

Во-вторых, отсутствие работоспособных радиолюбительских схем импульсных сварочных агрегатов (скорее всего работоспособная схема “гуляла” бы по интернету не только в виде собственно схемы, но также фотографий внешнего вида, монтажа, фото сварных швов) – говорит о чрезвычайной сложности этой проблемы даже для профессионалов (не говоря о радиолюбителях). Коммерческие фирмы, вложив в разработку немало финансовых и интеллектуальных способностей, не спешат раскрывать свои “ноу-хау”, публиковать схемы даже для ремонтников.

В третьих, следует признать, что отечественных аппаратов в продаже практически нет, а импортные стоят довольно дорого. Кто-то может сказать, что дороговизна вызвана “накрутками” торговли, таможенными пошлинами, налогами и прочими расходами. Допустим, что “наценка” составляет $200, тогда собственно у производителя аппарат покупается за $300. Много это или мало? Оценимся по стоимости комплектующих электрорадиоэлементов 8-киловаттного сварочного аппарата (ток 150 А) в расчете на то, что собранный аппарат заработает сразу. Итак:
– транзисторы IGBT силового моста IRG4PF50WD (по 3 шт параллельно, итого 12 шт) – $9,9х12 = $120,
– транзисторы IGBT схемы запуска IRG4PC50F (4 шт параллельно, итого 4 шт) – $6,5х5 = $20,
– конденсаторы электролитические 100 мкФ, 450 В (с мощными выводами, не менее 10 шт) – $3,6х10 = $36,
– ферритовые кольца М2500НМС1 для трансформатора типа К100х60х15 (ориентировочное количество для частоты преобразования 40 кГц – 10 шт) – $3,9х10 = $39,
– датчики тока для формирования “падающей” характеристики и защиты моста от КЗ (на основе эффекта Холла) типа ДТХ-100 – $15х2 = $30,
– выпрямительные диоды для моста, устанавливаемого в первичную сеть, типа 40HF80 (4 шт) – $4,2х4 = $17,
– выпрямительные диоды Шоттки для вторичной цепи (ток не менее 150 А, для обеспечения запаса по 2 в параллель) типа 129NQ150 – $18х4 = $72.

Я не расписываю здесь расходы на радиаторы, вентилятор принудительного охлаждения, драйверу управления силовыми ключами, опторазвязки, электронные схемы управления и защиты, маломощный трансформатор питания схем управления, медные шины (или скрученные провода) для намотки силового трансформатора, монтажные шины (ток в 150 А – это очень большой ток), автомат защиты питающей сети, лампочки сигнализации и многое другое – по мелочи. Положим на эти расходы (с учетом того, что кое-что радиолюбитель достанет из своего “хлама”) еще $150.

Суммируя все расходы, мы только-только выйдем на нашу цифру $500 – и это без учета работы по изготовлению, настройке и так далее. Впрочем, работы можно не учитывать – для радиолюбителя они оказываются как бы “бесплатными”. Но сами комплектующие бесплатными быть уж никак не могут!

Радиолюбитель не может вложить много средств в разработку, не может позволить себе большое количество ошибок (читайте – сгоревших транзисторов). Либо – наверняка и сразу, либо – никак. Но в любом случае конструкция окажется дороже, чем такая же, купленная в магазине. В приведенном расчете были использованы средние цены, взятые из прайс-листа петербургской “Мега-Электроники”. Учитывая, что на отечественном рынке не так много комплектующих, из которых можно построить действительно работоспособный “сварочник”, а цены не отличаются у поставщиков на порядки, можно выгадать из приведенной суммы порядка $50, может быть чуть-чуть больше.

Импульсный сварочный аппарат относится к устройствам повышенной сложности, где-то сравнивающейся с разработкой телевизора. При необходимости лучше купить его готовым, не тратя лишние деньги и силы, обеспечив электробезопасность. Остается лишь одна причина, которая переведев все предыдущие слова в разряд неубедительных и лишних – это интерес к творчеству. Пытать счастье в изготовлении самодельного “сварочника” будут многие, поэтому им – небольшие советы.

Начинать создание собственного аппарата нужно с изготовления импульсного стабилизатора на сотню-другую Ватт. Потом наращивать мощность, переходя к киловаттам. Ну а затем – если повезет и собранный “киловаттник” не пройдет “испытание на дым” – можно задуматься о сварке.

Советы относительно проектирования силового трансформатора, организации схемы управления ключами, выбора нагрузок проводников и силовых элементов даны в книге. Ничего нового здесь сказать нельзя, поэтому я не повторяюсь.

Для “сварочника”, по моему мнению, лучше подходят транзисторы IGBT, так как включаемые “в параллель” MOSFETы на такие напряжения окажутся дороже – придется больше параллелить. Проблемы возникают из-за значения сопротивления “сток-исток”.

Распараллеливать конденсаторы фильтра приходится из-за того, что в моменты пауз ток в нагрузке поддерживается только из запасенного в конденсаторах заряда. Параллельное включение конденсаторов уменьшает токовую нагрузку на выводы, снижает нагрев. Снижение пульсаций на конденсаторах возможно только до предельно допустимых значений, указанных в технических условиях на элементы.

В заключение еще раз обращаю внимание на то, что прежде чем заняться практическим изготовлением “сварочника”, нужно прикинуть свои финансовые возможности.

Литература
[1] “Мега-Электроника”. Импортные электронные компоненты. Каталог 37. Спб, 2002 г.

Отклики читателей
Спасибо за информацию по импульсному сварочнику (инвертору). У меня многие спрашивают о том как сделать самому. Ваша статья немного охладит их пыл. Все не так просто. Сварочным оборудованием занимаюсь профессионально, веду страницу.
С уважением, Анатолий


Импульсный сварочный аппарат

ИМПУЛЬСНЫЙ СВАРОЧНЫЙ АППАРАТ СВОИМИ РУКАМИ

Вашему вниманию представлена схема сварочного аппарата импульсного типа, который вы можете собрать своими руками. Максимальный потребляемый ток – 32 ампера, 220 вольт. Ток сварки – около 250 ампер, что позволяет без проблем варить электродом 5-кой, длина дуги 1 см, переходящим больше 1 см в низкотемпературную плазму. КПД источника на уровне магазинных, а может и лучше (имеется в виду инверторные).
Блок питания для контроллера выполнен отдельным модулем и имеет три выходных стабилизированных напряжения:

Трансформатор намотан на феррите Ш7х7 или 8х8
Первичка имеет 100 витков провода ПЭВ 0.3мм
Вторичка 2 имеет 15 витков провода ПЭВ 1мм
Вторичка 3 имеет 15 витков ПЭВ 0.2мм
Вторичка 4 и 5 по 20 витков провода ПЭВ 0.35мм
Все обмотки необходимо мотать во всю ширину каркаса, это дает ощутимо более стабильное напряжение.

На рисунке 2 – схема сварочника.

СИЛОВОЙ ТРАНСФОРМАТОР СВАРОЧНОГО АППАРАТА

Частота – 41 кГц, но можно попробовать и 55 кГц. Трансформатор на 55кгц тогда 9 витков на 3 витка, для увеличения ПВ трансформатора.

Трансформатор на 41кгц – два комплекта Ш20х28 2000нм, зазор 0.05мм, газета прокладка, 12вит х 4вит, 10кв мм х 30 кв мм, медной лентой (жесть) в бумаге. Обмотки трансформатора сделаны из медной жести толщиной 0.25 мм шириной 40мм обернутые для изоляции в бумагу от кассового аппарата. Вторичка делается из трех слоев жести (бутерброд) разделенных между собой фторопластовой лентой, для изоляции между собой, для лучшей проводимости высоко- частотных токов, контактные концы вторички на выходе трансформатора спаяны вместе.
Дроссель L2 намотан на сердечнике Ш20х28, феррит 2000нм, 5 витков, 25 кв.мм, зазор 0.15 – 0.5мм (два слоя бумаги от принтера). Токовый трансформатор – датчик тока два кольца К30х18х7 первичка продетый провод через кольцо, вторичка 85 витков провод толщиной 0.5мм.

Намотку трансформатора нужно делать с помощью медной жести толщиной 0.3мм и шириной 40мм, ее нужно обернуть термобумагой от кассового аппарата толщиной 0.05мм, эта бумага прочная и не так рвется как обычная при намотке трансформатора.
Вы скажите, а почему не намотать обычным толстым проводом, а нельзя потому что этот трансформатор работает на высокочастотных токах и эти токи вытесняются на поверхность проводника и середину толстого провода не задействует, что приводит к нагреву, называется это явление Скин эффект!
И с ним надо бороться, просто надо делать проводник с большой поверхностью, вот тонкая медная жесть этим и обладает она имеет большую поверхность по которой идет ток, а вторичная обмотка должна состоять из бутерброда трех медных лент разделенных фторопластовой пленкой, она тоньше и обернуты все эти слои в термобумагу. Эта бумага обладает свойством темнеть при нагреве, нам это не надо и плохо, от этого не будет пускай так и останется главное, что не рвется.
Можно намотать обмотки проводом ПЭВ сечением 0.5…0.7мм состоящих из нескольких десятков жил, но это хуже, так как провода круглые и состыкуются между собой с воздушными зазорами, которые замедляют теплообмен и имеют меньшую общую площадь сечения проводов вместе взятых в сравнении с жестью на 30%, которая может влезть окна ферритового сердечника.
У трансформатора греется не феррит, а обмотка поэтому нужно следовать этим рекомендациям.
Трансформатор и вся конструкция должны обдуваться внутри корпуса вентилятором на 220вольт 0.13 ампера или больше.

Для охлаждения всех мощных компонентов хорошо использовать радиаторы с вентиляторами от старых компьютеров Pentium 4 и Athlon 64. Мне эти радиаторы достались из компьютерного магазина делающего модернизацию, всего по 3…4$ за штуку.
Силовой косой мост нужно делать на двух таких радиаторах, верхняя часть моста на одном, нижняя часть на другом. Прикрутить на эти радиаторы диоды моста HFA30 и HFA25 через слюдяную прокладку. IRG4PC50W нужно прикручивать без слюды через теплопроводящую пасту КТП8.
Выводы диодов и транзисторов нужно прикрутить на встречу друг другу на обоих радиаторах, а между выводами и двумя радиаторами вставить плату, соединяющею цепи питания 300вольт с деталями моста.
На схеме не указано нужно на эту плату в питание 300V припаять 12…14 штук конденсаторов по 0.15мк 630 вольт. Это нужно, чтобы выбросы трансформатора уходили в цепь питания, ликвидируя резонансные выбросы тока силовых ключей от трансформатора.
Остальная часть моста соединяется между собой навесным монтажом проводниками не большой длины.
Ещё на схеме показаны снабберы, в них есть конденсаторы С15 С16 они должны быть марки К78-2 или СВВ-81. Всякий мусор туда ставить нельзя, так как снабберы выполняют важную роль:
первая – они глушат резонансные выбросы трансформатора
вторая – они значительно уменьшают потери IGBT при выключении так как IGBT открываются быстро, а вот закрываются гораздо медленнее и во время закрытия емкость С15 и С16 заряжается через диод VD32 VD31 дольше чем время закрытия IGBT, то есть этот снаббер перехватывает всю мощь на себя не давая выделяться теплу на ключе IGBT в три раза чем было бы без него.
Когда IGBT быстро открываются, то через резисторы R24 R25 снабберы плавно разряжаются и основная мощь выделяется на этих резисторах.

Подать питание на ШИМ 15вольт и хотя бы на один вентилятор для разряда емкости С6 контролирующую время срабатывания реле.
Реле К1 нужно для замыкания резистора R11, после того, когда зарядятся конденсаторы С9…12 через резистор R11 который уменьшает всплеск тока при включении сварочного в сеть 220вольт.
Без резистора R11 на прямую, при включении получился бы большой БАХ во время зарядки емкости 3000мк 400V, для этого эта мера и нужна.
Проверить срабатывание реле замыкающие резистор R11 через 2…10 секунд после подачи питания на плату ШИМ.
Проверить плату ШИМ на присутствие прямоугольных импульсов идущих к оптронам HCPL3120 после срабатывания обоих реле К1 и К2.
Ширина импульсов должна быть шириной относительно нулевой паузе 44% нулевая 66%
Проверить драйвера на оптронах и усилителях ведущих прямоугольный сигнал амплитудой 15вольт убедится в том, что напряжение на IGBT затворах не превышает 16вольт.
Подать питание 15 Вольт на мост для проверки его работы на правильность изготовления моста.
Ток потребления при этом не должен превышать 100мА на холостом ходу.
Убедится в правильной фразировке обмоток силового трансформатора и трансформатора тока с помощью двух лучевого осциллографа .
Один луч осциллографа на первичке, второй на вторичке, чтобы фазы импульсов были одинаковые, разница только в напряжении обмоток.
Подать на мост питание от силовых конденсаторов С9…С12 через лампочку 220вольт 150..200ватт предварительно установив частоту ШИМ 55кГц подключить осциллограф на коллектор эмиттер нижнего IGBT транзистора посмотреть на форму сигнала, чтобы не было всплесков напряжения выше 330 вольт как обычно.
Начать понижать тактовую частоту ШИМ до появления на нижнем ключе IGBT маленького загиба говорящем о перенасыщении трансформатора, записать эту частоту на которой произошел загиб поделить ее на 2 и результат прибавить к частоте перенасыщения, например перенасыщение 30кГц делим на 2 = 15 и 30+15=45, 45 это и есть рабочая частота трансформатора и ШИМа.
Ток потребления моста должен быть около 150ма и лампочка должна еле светиться, если она светится очень ярко, это говорит о пробое обмоток трансформатора или не правильно собранном мосте.
Подключить к выходу сварочного аппарата провода длиной не менее 2 метров для создания добавочной индуктивности выхода.
Подать питание на мост уже через чайник 2200ватт, а на лампочку установить силу тока на ШИМ минимум R3 ближе к резистору R5, замкнуть выход сварочного проконтролировать напряжение на нижнем ключе моста, чтобы было не более 360вольт по осциллографу, при этом не должно быть ни какого шума от трансформатора. Если он есть – убедиться в правильной фазировке трансформатора -датчика тока пропустить провод в обратную сторону через кольцо.
Если шум остался, то нужно расположить плату ШИМ и драйвера на оптронах подальше от источников помех в основном силовой трансформатор и дроссель L2 и силовые проводники.
Еще при сборке моста драйвера нужно устанавливать рядом с радиаторами моста над IGBT транзисторами и не ближе к резисторам R24 R25 на 3 сантиметра. Соединения выхода драйвера и затвора IGBT должны быть короткие. Проводники идущие от ШИМ к оптронам не должны проходить рядом с источниками помех и должны быть как можно короче.
Все сигнальные провода от токового трансформатора и идущие к оптронам от ШИМ должны быть скрученные, чтобы понизить уровень помех и должны быть как можно короче.
Дальше начинаем повышать ток сварочного аппарата с помощью резистора R3 ближе к резистору R4 выход сварочного замкнут на ключе нижнего IGBT, ширина импульса чуть увеличивается, что свидетельствует о работе ШИМ. Ток больше – ширина больше, ток меньше – ширина меньше.

Ни какого шума быть не должно иначе выйдут из строя IGBT!

Добавлять ток и слушать, смотреть осциллограф на превышение напряжения нижнего ключа, чтобы не выше 500вольт, максимум 550 вольт в выбросе, но обычно 340 вольт.
Дойти до тока, где ширина резко становиться максимальной говорящим, что чайник не может дать максимальный ток.
Все, теперь на прямую без чайника идем от минимума до максимума, смотреть осциллограф и слушать, чтобы было тихо. Дойти до максимального тока, ширина должна увеличиться, выбросы в норме, не более 340вольт обычно.
Начинаем варить. В начале 10 секунд. Проверяем радиаторы, потом 20 секунд, тоже холодные и 1 минуту – трансформатор теплый. Спалил 2 длинных электрода 4мм – трансформатор горечеватый.
Радиаторы диодов 150ebu02 в сварочном аппарате заметно нагрелись после трех электродов, варить уже тяжело, человек устает, хотя варится классно, трансформатор горяченький, да и так уже ни кто не варит. Вентилятор через 2 минуты трансформатор доводит до теплого состояния и можно варить снова до опупения.


Импульсный сварочный аппарат

Импульсный электродуговой сварочный аппарат

Идея создания небольшого, компактного, лёгкого, но в то же время достаточно “приличного” по параметрам сварочного аппарата родилась в нашем коллективе ещё в далёком 1994-м году. Однако, наша частичная безграмотность и неосведомлённость не позволила нам решить проблему ,так сказать, “с ходу”. Единственное, что мы знали, что напряжение холостого хода у всех “обычных” аппаратов – около 60-ти вольт, а токи достигают 150-200 ампер. Но. но тут мы узнали, что идея наша не нова, и некоторые ужедля себя её давным давно решили. На кафедре Электрооборудования Самолётов и Автомобилей в Московском Энергетическом Институте Андрианом Борисовичем Опаровым (был там такой мужик ) был изготовлен электродуговой сварочный аппарат, который при токе сварки от 30-ти до 80-ти ампер имел вес всего 7.5 кг и запросто умещался в дипломате. Некоторые скажут: “Маловато! маловато будет!”. А что, для того, чтобы варить автомобиль вполне достаточно, да и забор на даче в случае чего подварить хватает. Главное, что этот аппарат можно было подключать в обычную бытовую розетку

220 вольт! (КПД то больше 85%).
Из этических соображений схема А.Б.Опарова на данном сайте не публикуется.

Аппарат А.Б.Опарова послужил прообразом для воплощения нашей идеи. Естественно, что в первоначальную схему было внесено масса изменений.
Во-первых , возбуждение преобразователя было сделано от внешнего генератора (в схеме А.Б.Опарова преобразователь “самовозбуждающийся” с насыщающимся выходным трансформатором).
Во-вторых , добавлена схема “мягкого” запуска (для предотвращения перегорания диодов сетевого выпрямителя в момент включения в сеть).
В-третьих , для измерения тока первичной обмотки (а вместе с ним и во воторичной) был применён компаратор 554СА3 (в схеме А.Б.Опарова компаратор был собран на транзисторе КТ315 и тиристоре КУ112).
В-четвёртых , были разделены выходные обмотки и выходные выпрямители.

После всех доработок, изменений и расчётов в конвульсиях и мучениях нашим небольшим коллективом, а именно Начальником Штаба Революционных Матросов O и нашим ЗАМпоТЫЛом (то есть Максом) была рождена следующая схема, которую мы приводим ниже.
Не пугайтесь особо, что всё так мелко нарисовано. Схему с более крупным разрешением можно получить, если щелкнуть мышью маленькой схемке

Здесь приведена схема управления и часть схемы запуска. (другая часть показана на предыдущей схеме).
Для более детального просмотра кликните по схеме. Спецификации деталей будут указаны ниже.
Внимание!
Имеется чертеж печатной платы и схема размещения деталей для последней версии схемы.

Как известно, напряжение на дуге в режиме сварки обычно составляет около 20-24 вольт. В режиме разрезания металла напряжение может достигать и 30-36 вольт. Для поддержания дугового разряда достаточно не очень высокого ннапряжения пробоя, всего несколько вольт. Но для нормальной “поддержки” дугового разряда время деионизации молекул газа (воздуха, продуктов “горения”) в зоне дуги должно быть значительно больше времени восстановления напряжения пробоя ионизированного газа. Для сухого воздуха со стандартным атмосферным давлением это время составляет около 50-ти миллисекунд. Для восстановления дуги при таких условиях необходимо напряжение пробоя выше 25-30ти вольт
“Обычный” сварочный аппарат (трансформаторный) работает от сети переменного тока частотой 50 герц, при этом время восстановления дуги не может превышать 20-25ти миллисекунд. По причине этого сварочные аппараты переменного тока обычно имеют напряжение холостого хода 60-80 вольт. Время восстановления в среднем составляет 25-35 миллисекунд. Для увеличения стабильности дуги желательно, чтобы источник (в данном случае трансформатор) имел достаточно большую индуктивность. Но, с другой стороны, увеличение индуктивности сварочного трансформатора ведёт к увеличению его реактивного сопротивления, а значит к уменьшению тока на дуге. Очень часто сердечник сварочного трансформатора выполняют ввиде незамкнутого магнитопровода с регулируемым зазором. По этим причинам сварочные аппараты переменного тока имеют достаточно узкий диапазон регулировки тока, большие габариты, вес и низкий КПД.
У аппаратов постоянного тока элементом стабилизации тока служит отдельный дроссель (иногда два дросселя). Время восстановления дуги у таких сварочных аппаратов может быть сокращено до 10-25 миллисекунд, за счёт этого напряжение холостого хода может быть понижено до 40-50 вольт. Казалось бы: теперь индуктивность стабилизируещего дросселя можно увеличивать и увеличивать, но. при слишком большой индуктивности дросселя становится достаточно трудно зажечь дугу, возникает так называемый “эффект прилипания электрода”.
Чтобы добиться хорошей стабильности дугового разряда и хорошего “зажигания” желательно, чтобы индуктивность стабилизирующего дросселя была низкой (для быстрого увеличения тока в момент зажигания) и частота тока была как можно выше (чтобы уменьшить время восстановления дуги).
Как известно, в промышленной электросети напряжение переменного тока составляет 220 вольт, а частота – 50 герц, и с этим приходится мириться. Увеличить частоту переменного тока можно только используя выпрямитель и преобразователь напряжения.
Также, по причине того, что трансформатор сварочного аппарата кроме активного сопротивления имеет также и реактивное (без нагрузки трансформатор работает как индуктивность), то даже при отсутствии тока во вторичной обмотке, через первичную обмотку всё равно протекает достаточно большой ток. Хотя при “холостом ходе” сварочный аппарат потребляет не очень большое количество энергии, реактивная составляющая тока может быть достаточно велика. При работе аппарата вектора “реактивного” и “активного” токов складываются, и суммарный ток может достигать значительных величин. По этой причине обычный сварочный аппарат нельзя подключать к бытовой электрической розетке, так как электрические провода должны иметь достаточно большое сечение, и предохранительные “автоматы” должны быть расчитаны на большой ток (до 50-ти и более ампер).
Габариты и масса стандартных сварочных аппаратов также не позволяют использовать их в качестве переносных. При работе, для того, чтобы не переносить сам аппарат, сварщики просто используют длинные соединительные провода. Сечение таких проводов доходит до 20-ти и более кв.мм. Естественно, что и стоимость самих соединительных проводов (в денежном эквиваленте) может быть сопоставима со стоимостью самого сварочного аппарата.
Также любой сварочный аппарат имеет такой параметр, как КПВ, выраженный в процентах (отношение: время работы/время остывания + время работы). В редких случаях данный параметр превышает 80%, чаще всего встречаемый параметр КПВ=50% (тут имеются ввиду режимы максимальных токов). Многие производители указывают кроме КПВ также и продолжительность непрерывной работы, которая иногда не превышет дву-трёх минут.

Сварочный аппарат постоянного тока, собранный по схеме [ВЫПРЯМИТЕЛЬ->ВЧ.ПРЕОБРАЗОВАТЕЛЬ->ВЫПРЯМИТЕЛЬ+ДРОССЕЛЬ] лишён указанных недостатков.
В силу того, что отсутствуют реактивные токи в питающей сети, а при работе аппарата практически 85% энергии “идёт в дело”, данный аппарат можно безболезненно подключать к обычной бытовой розетке, не беспокоясь о том, что проводка может перегореть (потребляемая аппаратом мощность при максимальных режимах работы немногим больше превышает мощность бытового электроутюга).
КПВ у такого аппарата, если и не 100%, то, во всяком случае, где-то рядом, да и продолжительность непрерывной работы намного больше, чем 20 минут.
Если учесть вес аппарата – не более 10-ти кг -, то отпадает необходимость в длинных соединительных проводах, гораздо проще просто поднести аппарат к месту работы. Сечение проводов также можно уменьшить. Для “сварочных” проводов достаточно сечения 12 кв.мм. (при длинне 2-3 метра), а в качестве “питающих” проводов вполне можно употреблять бытовые электроудлинители, важно только, чтобы максимальный ток для выбранного удлинителя был не менее 10-ти ампер.

Принципиальная схема сварочного аппарата представлена выше.
Принцип работы данного сварочного аппарата – стабилизация тока дуги методом широтно-импульсной модуляции (ШИМ). Частота преобразователя составляет 18-25 килогерц (в зависимости от настроек). Напряжение “холостого хода” – 40-45 вольт, ток от 30 до 120 ампер. КПД – не менее 80% (. ).
Сварочный аппарат состоит из нескольких основных узлов:

    1. Основной выпрямитель сетевого напряжения с фильтрами
    2. Схема “мягкого” включения
    3. Устройство питания схемы управления и запуска
    4. “Силовая” часть преобразователя
    5. Схема измерения тока и управления ШИМ
    6. Выходной выпрямитель с фильтрами

Немного подробнее о работе узлов здесь

Кстати, о птичках. Собирая как-то раз одну из действующих моделей, мы столкнулись
с некоторыми проблемами , о которых я попытаюсь немного рассказать.


Читайте также:  Arc 250 сварочный аппарат
Поделитесь статьей в соц. сетях:
Вам также может быть интересно:
  • Машина шлифовальная пневматическая к 7055
  • Потребляемая мощность сварочного аппарата
  • Сварочные аппараты постоянно переменного тока
  • Алмазная коронка по бетону для перфоратора
Логотип сайта Инструменты и оборудование

Станьте первым!

Оставьте комментарий
Нажмите, чтобы отменить ответ.

Данные не разглашаются. Поля, помеченные звездочкой, обязательны для заполнения

Свежие записи:
  • Гайковерт для шиномонтажа

    Пневматический ударный гайковёрт Инструмент. Хороший инструмент для автосервиса всегда был вожделенн

  • Гайковерт для ледобура
  • Гайковерт гидравлический торцевой
  • Гайковерт гидравлический кассетный
  • Гайковерт автомобильный
© 2021 ~ Инструменты и оборудование ~ ~ Разработка WP-Fairytale